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ABSTRACT
We propose a novel automatic method to segment the my-
ocardium on late-enhancement cardiac MR (LE CMR) im-
ages with a multi-step approach. First, in each slice of the
LE CMR volume, a geometrical template is deformed so that
its borders fit the myocardial contours. The second step con-
sists in introducing a shape prior of the left ventricle. To
do so, we use the cine MR sequence that is acquired along
with the LE CMR volume. As the myocardial contours can
be more easily automatically obtained on this data, they are
used to build a 3D mesh representing the left ventricle geom-
etry and the underlying myocardium thickness. This mesh is
registered towards the contours obtained with the geometri-
cal template, then locally adjusted to guarantee that scars are
included inside the final segmentation. The quantitative eval-
uation on 27 volumes (272 slices) shows robust and accurate
results.

Index Terms— Image Segmentation, Late-Enhancement,
Magnetic Resonance Imaging, Cardiovascular System, Au-
tomation.

1. INTRODUCTION

Viability assessment is essential for surgery and therapy plan-
ning following a myocardial infarction. In particular, the pro-
portion of viable myocardium is a major factor in determining
whether a patient may benefit from revascularisation. In ad-
dition to estimating the left ventricular function with a cine
Magnetic Resonance (MR) sequence, it is possible to visu-
alise normal, ischemic and non-viable areas with high spa-
tial resolution, using late-enhancement cardiac MR imaging
(LE CMR). In a typical MR examination, a contrast agent
is injected, the cine sequence is acquired approximately at
the same time and finally, the LE CMR acquisition is done
around twenty minutes later. During this time, the patient is
supposed to have stayed still on the table. At the LE CMR
acquisition time, due to the loss of membrane integrity in in-
farcted tissues, the constrast agent accumulates in abnormal
parts of the myocardium, which are consequently enhanced
(become bright) while healthy myocardium remains dark, as
shown in the sample slice of Fig. 1.

Fig. 1. Sample short-axis LE CMR slice

To locate and quantify non-viable tissue, the first step is
the delineation of the endo- and epicardial contours on every
slice (typically 10 to 20) of the LE CMR short-axis volume,
which is tedious and time-consuming when done manually.
However, automatically performing this task is challenging
and, to our knowledge, not yet offered by any commercial
product. Indeed, recent studies involving viability assessment
generally use a manual or semi-automatic method to obtain
the myocardial contours [1, 2]. Even the numerous publi-
cations that describe automatic methods for myocardium de-
lineation, involving shape and appearance models [3, 4], de-
formable meshes [4], level sets [5, 6] or graph-cuts [7], are
designed for cine images.
The main difficulty with processing LE CMR volumes is

the non-homogeneous intensity of the myocardium resulting
from contrast agent accumulation in infarcted areas. How-
ever, the patient does not move between the cine and LE ac-
quisitions, it is thus interesting to use a segmentation result
obtained on the cine data as prior knowledge to automatically
segment the myocardium in the LE volume, as proposed by
Dikici et. al. [8]. The main challenge in this approach comes
from the unintentional patient movements due to relaxation
and breathing between the cine and LE acquisitions, which
may induce an elastic displacement of the heart and surround-
ing organs, resulting in a correspondence loss between the
slices in both volumes. For this reason, instead of using a
2D registration framework as in [8], we prefer a 3D approach
combined with dedicated processing on the LE volume.
This paper is organised as follows: the automatic my-

ocardium segmentation method is presented in Sec. 2 and
quantitatively assessed in Sec. 3, then we conclude in Sec. 4.
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Fig. 2. Segmentation workflow

2. METHODS

Our automatic segmentation method combines several tech-
niques to find the myocardial contours. The workflow is de-
scribed in Fig. 2. First a 2D geometrical template is used
to find the myocardial contours position in each slice of the
LE CMR volume (step A). Despite its robustness, this ap-
proach may lead to inaccuracies along the myocardium bor-
ders. This effect is thus compensated by the shape prior that
is introduced with a 3D mesh built from the cine image se-
quence of the same patient. This mesh is registered to the
LE CMR volume (step B) and deformed towards the 2D con-
tours obtained at step A to achieve the final myocardium seg-
mentation.

2.1. Step A: 2D segmentation with a geometrical template

Template initialisation. The myocardium is robustly located
with a variant of the Hough transform tailored to the detection
of annular shapes. Its dark and circular appearance make it
detectable as the best response to the convolution of the image
with a radially-symmetric kernel modeling a dark ring. The
radial profile of the kernel is defined as follows:
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where ρ is the radius of the ring andΔ is the Laplacian opera-
tor. A ring of radius ρ is thus represented by the Laplacian of
a Gaussian function shifted by ρ. Its width is directly related
to the standard deviation σ, chosen according to the expected
thickness of the myocardium. We compute the convolution
in the Fourier domain for various ρ and choose the best re-
sponse, which defines the optimal centre and radius of the
deformable template initial position.

Template description. The myocardium is modeled
as a closed ribbon structure with an imaginary centreline

Ci(s) = C(s)− 0.5 w(s)n(s)

Co(s) = C(s) + 0.5 w(s)n(s)

Fig. 3. Template geometry (left); Detailed zoom (centre).

C(s) = (x(s), y(s)) and a variable width w(s), both of
which are continuous spline interpolations of a discrete set
of {pk = (xk, yk, wk)} samples defined at each node (see
Fig. 3). This compact representation provides a natural cou-
pling between the endocardium Ci and the epicardium Co

(the inside and outside contours). We also define the two
regions M and B, corresponding respectively to the my-
ocardium and blood pool (see Fig. 3).

Template deformation. We aim at finding the set of
parameters minimizing a criterion that expresses the match
of the template and the image evidence, given some prior
knowledge. Built from observations of typical cardiac
short-axis images, this knowledge is translated into math-
ematical terms expressing shape, contour and region con-
straints. In the remainder, I is the image and the λi’s
are scalar weights balancing the various terms. Let p ={
pk = (xk, yk, wk)T , k ∈ �1, N�

}
be our parametric model.

The problem can now be formalised as follows:

min
p

{
F (p, I) = Fs(C, w)︸ ︷︷ ︸

shape

+Fc(Ci,Co, I)︸ ︷︷ ︸
contour

+Fr(M,B, I)︸ ︷︷ ︸
region

}

Shape: The centreline curvature and the width should both
have small variations, which yields:

Fs(C, w) = λ0

∫
1

0

|κ(s)− κ|2 ds + λ1

∫
1

0

|w′(s)|2ds,

where κ(s) is the centreline curvature, with average κ.

Contour: The epicardium and the endocardium walls are
preferred locations of image gradients, as expressed by:

Fc(Ci,Co, I) = λ2

∫
1

0

∇Iin(s)ds− λ3

∫
1

0

|∇Ion(s)| ds,

where∇Iin = ∇I(Ci(s)).n(s) (resp. ∇Ion withCo),∇I is
the image gradient and n(s) is the outward-pointing normal
to the centreline. To implement this term, we use gradient
filters that express prior knowledge on the relative intensity of
normal and abnormal parts of the myocardium, as explained
in the Special processing paragraph below.

Region: The blood pool grey levels should be homogeneously
distributed. Also, normal myocardium tissues are dark while
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Fig. 4. Definition of quadrants

abnormal ones are bright, which results in a strong global
contrast with the blood pool. Therefore we have:

Fr(M,B, I) =
λ4

|M|
∫
M

|I(x, y)−m| dxdy

+
λ5

|B|
∫
B

∣∣I(x, y)− b
∣∣ dxdy + λ6(m− b)

where region B has an average intensity b and area |B|, while
the expected intensity ism for the myocardium regionM.

Special processing for abnormal tissues. Even if abnor-
mal tissues have different intensities than healthy regions, we
cannot predict their location. To solve this problem, we pro-
pose to divide the myocardium in four anatomically mean-
ingful quadrants whose locations depend on the position of
the left and right ventricles (resp. LV and RV) centres (see
Fig. 4). The LV centre is known from the template initiali-
sation, whereas the RV centre is automatically detected with
simple image processing operations such as correlation with
the LV region . Then, instead of being computed on the whole
myocardium, each term of the minimisation criterion is cal-
culated separately in each quadrant, which has several advan-
tages. First, the gradient filters defining the contrast terms are
adapted to the quadrant location on the basis of anatomical
knowledge. For example, in Q1, we expect the myocardium
to be darker than the surrounding RV whereas inQ3, the con-
trast with the lung is low although a thin slice of bright fat
is often visible. Second, computing the criterion terms sep-
arately allows the algorithm to detect abnormal tissue in a
given quadrant and trigger an adapted processing.
Abnormal tissue detection. To ease the detection, each

slice of the LE CMR volume is pre-processed before the tem-
plate deformation: the intensity distribution mixture is esti-
mated with an Expectation-Maximisation algorithm, allow-
ing to stretch the intensity range so as to saturate the dark-
est and brightest parts of the image. These areas respec-
tively correspond to the healthy myocardium and abnormal
tissues, which are consequently expected to appear as homo-
geneous regions of the minimum (h̄) and maximum (ā) inten-
sities in the new range. Then, in a given myocardium quadrant
Mi = M∩ Qi, i ∈ [1, 4], potential scars or ischemic areas
are detected if all the three following conditions are met:
(i-Brightness) The myocardium average intensity inside the

quadrant is higher than the blood pool average intensity:∫
Mi

|I(x, y)|dxdy > b̄

(ii-Homogeneity around the expected value) The intensity dis-
persion with respect to ā is lower than with respect to h̄:∫

Mi

|I(x, y)− ā|dxdy <

∫
Mi

|I(x, y)− h̄|dxdy

(iii-Homogeneity) The sum of the local gradient magnitude
inside the myocardium quadrant is low.
Inversion of criterion terms. If a scar is detected inMi,

the criterion terms are adapted. As the scar is brighter than the
surrounding organs, the gradient filters defining the expected
contrast along the borders are inverted. For the same reason,
the expected value inside the myocardium m̄ that is used in
Fr is ā instead of h̄.

Optimisation. We use a greedy optimisation scheme em-
bedded in a coarse-to-fine approach to optimise simultane-
ously the nodes position and ribbon width. This leads to ro-
bust and stable 2D segmentation results. However, inaccura-
cies remain along the borders (see the arrows in Fig. 5(a)).

2.2. Step B: 3D mesh alignment

This step aims at introducing prior knowledge of the LV shape
and thickness. This is done by using the short-axis cine MR
acquisition that is usually acquired during the same exami-
nation as the LE CMR data and identifying the phase which
matches best the late-enhancement acquisition time in the car-
diac cycle. The myocardial contours can nowadays be easily
automatically obtained for each cine phase [9]. They are thus
extracted and gathered to build a 3D mesh representing the
LV geometry and the underlying myocardium thickness.
In order to register this mesh towards the LE CMR vol-

ume, we first compute the rigid transform between the cine
and LE CMR data. This is done by estimating the LV axis
on both volumes. Using the same detection algorithm as for
the geometrical template initialisation (see Sec. 2.1), we ob-
tain the LV centre on each slice. This gives a set of roughly
aligned points, from which the axis is estimated by using a
least mean squares algorithm with an outlier rejection step.
The rigid transform which aligns the axes of the cine and
LE CMR data is then calculated and applied to the mesh.

2.3. Combined A+B: deformation towards 2D contours

If this axis-based registration aligns the mesh with the
LE CMR data, it leaves some uncertainties concerning its
position (resp. rotation) along (resp. around) its axis. This
problem is difficult to solve by using the image grey levels
only, that is why the mesh is deformed in 3D [10] towards the
stack of 2D contours obtained at step A. This approach takes
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Fig. 5. Contours for patients P1 to P3. (a) Step A result and
inacurracies (arrows), (b) Final result, (c) Manual contours.

advantage of both the knowledge of the actual LV geometry
(embedded in the mesh) and the myocardium borders position
on the LE CMR volume brought by the contours. The defor-
mation is done with an affine-to-local strategy: first we find
the affine transform which gives the best fit between the mesh
and the contours stack, without changing the mesh geometry;
then we define a specific force F3D applied at each mesh
vertex, taking into account the original shape of the mesh as
a strong constraint (Fint), the distance to the appropriate 2D
contour (Fcont) and the myocardium thickness (Fth):

F3D = Fint + Fcont + Fth.

Finally, the mesh is locally refined by replacing the con-
tour attracting force by a test on the image intensity (FI ) to
guarantee that scars, i. e. bright areas, are included inside the
final myocardial contours, leading to the following force:

F3DRefine = Fint + FI + Fth.

3. RESULTS

We quantitatively assessed the performance of the method
on a database of 27 LE CMR acquisitions (10 to 12 slices
of 256 × 256 pixels) containing various types of abnormal
tissues (large white transmural scars, sub-endocardial scars,
scattered white areas...) by computing the distance between
automatic results and manual delineations provided by ex-
perts (See Fig. 5(c)).
The average error between the manual and automatic con-

tours is 2.2± 0.6 mm for the endocardium and 2.0± 0.8 mm
for the epicardium with a pixel size of 1.5 mm, which is close

to intra- and inter-observer variability. Moreover, when re-
moving 4 bad-quality acquisitions from the dataset, the re-
sults are respectively 2.0± 0.4 mm and 1.9± 0.7 mm for the
endo- and epicardium. As shown in Fig. 5, the visual quality
is good, the contours successfully surround both normal and
abnormal parts of the myocardium, which allows a reliable
assessment of the percentage of non-viable tissue.

4. CONCLUSION

We presented an automatic, robust and time-saving method
for the fully automatic delineation of the myocardium con-
tours in LE CMR images, which is an indispensable step in
myocardial viability assessment.
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